Aerosol Challenge Technology and Applications in Biodefense

"Biological Safety"

Manuel S. Barbeito

Biological Safety Consultant

and

Deborah E. Wilson, DrPH
Chief, Occupational Safety and Health Branch
National Institutes of Health

Guidelines/Management Documents Applicable to RBLs and NBLs

- NIH Grants Policy Statement 03/01/01 Part II
 Subpart B (Construction Grants)
- NIH Design and Policy Guidelines
- Biosafety in Microbiological and Biomedical Laboratories
 CDC/NIH 4th Ed.
- Primary Containment for Biohazards: Selection,
 Installation and Use of Biological Safety Cabinets
 CDC/NIH Appendix A of the BMBL

Guidelines/Management Documents Applicable to RBLs and NBLs

- Guide for the Care and Use of Laboratory Animals, National Research Council, National Academy Press, Washington D.C.
- Select Agent Rule and Related Matters
 CDC

Guidelines/Management Documents Applicable to RBLs and NBLs

- NIH Model Commissioning Guide
- Public Disclosure National Environmental Policy Act (NEPA)
- Life Safety Guide National Fire Protection Association (NFPA) Pub 101
- Prudent Practices for Safety in Laboratories
 (1595) National Research Council
- National Sanitation Foundation Standard No. 49 for Class II (Laminar Flow) Biohazard Cabinetry
- USDA Agriculture Research Service 242.1

Functions: Equipment and Facility + Practices

Protect Employees

Protect Experimental Materials

Protect Research Animals

Protect Environment

Facilities

• BSL-1, 2, 3, 4

Animal BSL-1, 2, 3, 4

Agricultural – BSL-1, 2, 3, 4 Ag.

Special Considerations

- Comprehensive Medical Surveillance Program
 - Pre Screening (Initial Physical)
 - Immunization
 - Follow-up All Employee Illnesses
 - Terminal Physical Examinations

Selection + Use Personnel Protective Equipment

- Clothing Change Laboratory Garments
- Respiratory Protections

Full Face Respirators

Half Suites

Ventilated Plastic Full Length Suites

- Eye Protection
- Selection and Use of Gloves

Training

- All Encompassing
- Laboratory Manipulations
- Protocols
- Procedures
- Practices
- Decontamination
- Equipment Usage
- Animal Care and Use

Aerosol Challenges

- BSL-3, 4 Facilities
- Primary Barriers Biological Safety
 Cabinets

Aerosol Chambers
Henderson Apparatus

Type Challenges

Liquid Suspensions

Dried Microorganisms

Challenge Methods

- Nose Dropper
- Micro Pipettes
- Oral Feeding Tubes
- Nose + Mouth Only
- Head Only
- Whole Body

Special Animal Handling Requirements

Caging – Transport

Exposure

Long Term Holding

Examination

Aerosols From Laboratory Manipulations

Episodes of Single-source, Multiple Laboratory Infections

Disease	Probable Source of Infection	Maximum Distance From Source	Number Persons Infected
Brucellosis	Centrifugation	Basement To 3 rd floor	94
Coccidioidomycosis	Culture transfer solid media	2 Building floors	13
Coxsackle Virus infection	Spilled tube of infected mouse tissue on floor	5 feet (estimated)	2
Murine Typhus	Intranasal inoculation of mice	6 feet (estimated)	6
Tularemia	20 petri plates dropped	70 feet	5
Venezuelan encephalitis	9 lyophilized ampoules dropped	4 th floor stairs to 3 rd or 5 th	24

Opening A Container

Withdrawing A Needle From A Vaccine Bottle

Vortex Mixing

Pipette: Blowing Out The Last Drop

Opening A Centrifuge Cup

AEROSOLS FROM LAB EQUIPMENT (10¹⁰/ml culture – 10 min. use)

Blender, opened at once		10^{6}
-------------------------	--	----------

Sonicator, with bubbling 10⁶

Pipetting, vigorous 10⁶

Dropping culture 3 x 10⁵

Splash on centrifuge rotor 10⁵

Drop spill on zonal rotor 2 x 10⁴

Blender, opened at 1 minute 2 x 10⁴

Pipetting, carefully 10⁴

Dimmick et al., 1973

Aerosols from Animal Cage Cleaning

Factors Affecting Survival of Aerosolized Organisms

- Environmental-temperature, relative humidity
- Suspending Medium pH, specific gravity, constituents, e.g. protein
- Surface Porous vs. non-porous

Factors Affecting Character of Aerosols

Energy Input

Low – Large particles

High – small particles

Infectious Units/Particle – organisms/unit, volume of original suspension

Persistence-particle size

Estimated Small Particle Aerosol Dose from Pipetting 10¹⁰/ml - min

• At 3 feet 1,200

• At 10 feet 50

Dimmick 1973 et. al.,

Estimated Small Particle Aerosol Dose from Blender 10¹⁰/ml –

5 min

• At 3 feet 2,000

• At 10 feet 200

Dimmick 1973 et. al.,

Summary

Facility – Planning

Construction
Operation + Use
Maintenance

- Adopt Good Policies, Procedures, Practices
- Select Challenge Method
- Institute Proper Animal Care and Use
- Institute Personnel Wellness Program
 - Medical Surveillance Program
 - Personnel Protective Equipment